Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(11): 5274-5285, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437099

RESUMO

Soil microbial communities play an important role in driving a variety of ecosystem functions and ecological processes and are the primary driving force in maintaining the biogeochemical cycle. It has been observed that soil microbial diversity decreases with land use intensification and climate change in the global background. It is essential to investigate whether the reduction in soil microbial diversity can affect soil multifunctionality. Thus, in this study, the dilution-to-extinction method was used to construct the gradient of soil microbial diversity, combined with high-throughput sequencing to explore the impact of the reduction in bacterial, fungal, and protist diversity on soil multifunctionality. The results showed that the soil microbial alpha diversity (richness and Shannon index) was significantly lower than that of the original soil. Principal coordinate analysis (PCoA) showed that the microbial community structure of original soil was significantly different from that of diluted soil, and the response of bacterial and fungal communities to diluted soil was higher than that of protists. The regression model showed that there was a significant negative linear relationship between the average response value of soil multi-function and the index of microbial diversity, indicating that the change in soil microbial community was the key factor in regulating soil multifunctionality. The regression model showed that there was a significant negative linear relationship between soil multifunctionality and microbial diversity, indicating that the change in soil microbial community was the key factor to regulate soil multi-kinetic energy. Through the aggregated boosted tree analysis (ABT) and regression model, we found that some specific microbial groups, such as the Solacocozyma and Holtermaniella of fungi and Rudaea of bacteria, could significantly promote the change in soil multifunctionality, which showed that key microbial taxa play an indicative role in biological processes. Furthermore, the structural equation model revealed that bacteria could affect soil multifunctionality through the interaction between microbiomes, which was the key biological factor driving the change in soil multifunctionality. This study provided experimental evidence for the impact of soil microbial diversity on soil multifunctionality, and promoted the notion that maintaining a certain diversity of soil microbial community in a single agricultural ecosystem, especially the diversity of key microbial taxa, is of great significance to the sustainable development of ecosystem function in the future.


Assuntos
Microbiota , Solo , Solo/química , Microbiologia do Solo , Biodiversidade , Mudança Climática , Bactérias/genética
2.
Huan Jing Ke Xue ; 40(3): 1475-1482, 2019 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-31088000

RESUMO

Rhizosphere and non-rhizosphere soil samples under different long-term fertilization treatments including control without fertilizer (CK), chemical fertilization alone (NPK), rice residues combined with NPK (NPKS), 30% manure plus 70% chemical fertilizers (LOM), and 60% manure plus 40% chemical fertilizers (HOM) were collected from a paddy field in a red soil hilly area in Ningxiang City, Hunan Province, China. The characteristics of microbial carbon utilization in the soils were studied. Results of 18O-H2O tracer analysis showed that both soil microbial biomass carbon content (MBC) and microbial growth rate (CGrowth) were highest in the HOM treatment, whereas they were lowest in CK. In the rhizosphere soil, the highest basal respiration was observed in HOM, and the lowest values were in CK and NPK. Microbial carbon utilization efficiency (CUE) was highest in NPK but lowest in the LOM and HOM treatments. In non-rhizosphere soil, no significant differences between basal respiration and CUE were observed among the fertilization treatments. Results from MicroRespTM showed that the ability of microorganisms to metabolize exogenous carbon sources was higher in non-rhizosphere soil than in rhizosphere soil. The application of organic materials (rice residues or manure) increased the microbial metabolic rate of carboxylic acids, amino acids, and carbohydrates in the order carboxylic acids > amino acids and carbohydrates > complex compounds. Redundancy analysis of the microbial metabolism patterns of various carbon substrates showed that:① CK was well separated from the fertilization treatments; ② NPK was grouped with NPKS, whereas LOM and HOM were grouped together and were separate from NPK and NPKS. This indicates that the fertilization treatments changed the microbial carbon metabolism patterns. The above-mentioned results indicated that the fertilization treatments did not affect microbial CUE and basal respiration. However, exogenous carbon source input (such as root exudates) and the application of organic materials can increase microbial basal respiration, and thus, reduce microbial CUE.


Assuntos
Carbono/química , Metaboloma , Oryza , Rizosfera , Microbiologia do Solo , Solo/química , China , Fertilizantes , Esterco
3.
Huan Jing Ke Xue ; 40(3): 1483-1490, 2019 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-31088001

RESUMO

Available carbon is the most active part of the soil carbon pool. It is also the main carbon source of soil microbes and plays an important role in the processes of soil organic carbon mineralization and accumulation. However, the mechanisms are still not clear how soil organic carbon mineralization and its priming effect (PE) are affected by different input levels of readily available carbon, based on the growth requirements of microbes in paddy soil. In this study, an incubation experiment was conducted by adding different levels (0.5, 1, 3, and 5 times of MBC) of exogenous source organic carbon (13C-glucose) to the soil. The mineralization dynamics of labile organic carbon and its priming effect was investigated. The mineralization rate of glucose-C increased significantly with the increasing carbon loading level. The distribution of glucose-C into rapid and slow C pools was also exponentially correlated with the carbon loading (R2=0.99, P<0.05 and R2=0.99, P<0.05, respectively). Negative PE was observed at high carbon loading (3×MBC and 5×MBC); while positive PE was induced by low carbon loading (0.5×MBC and 1×MBC). The cumulative PE was 160.0 mg·kg-1 and 325.1 mg·kg-1, respectively, at the end of the incubation. Redundancy analysis showed that the main factors affecting the cumulative PE were MBC, MBN, and DOC at the initial glucose mineralization stage, while ß-glucosidase, chitinase, and ammonium nitrogen were the main factors at later stages. Therefore, the readily available carbon loading has an important effect on the organic carbon mineralization and PE in paddy soil. Higher carbon loading was good for the accumulation of organic carbon sequestration in paddy soil. This study is of great scientific significance for revealing the activity of organic carbon in paddy fields and for its contribution to the development of sustainable agriculture.

4.
Ying Yong Sheng Tai Xue Bao ; 30(1): 189-197, 2019 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-30907540

RESUMO

Soil samples were collected from paddy ecosystem under five long-term fertilization treatments, including control without fertilizer (CK), chemical fertilization alone (NPK), rice residue combined with NPK (NPKS), 30% manure plus 70% chemical fertilizer (LOM), and 60% manure plus 40% chemical fertilizer (HOM) in Ningxiang City, Hunan Province. The cha-racteristics of amino sugars accumulation in the rhizosphere and non-rhizosphere soils at rice tillering stage were analyzed. Results showed that the contents of soil organic carbon, total amino sugars and three amino monosaccharides (muramic acid, glucosamine and galactosamine) with long-term application of organic materials (rice residue or manure) were significantly higher compared with CK and NPK. The inconsistent accumulation trends of the three amino monosaccharides under different fertilization treatments indicated that different responses of microbial groups to various fertilization treatments. The content of total amino sugars was not significantly different between the rhizosphere soil and the non-rhizosphere soil, probably because the agricultural operations such as plowing could homogenize paddy soils. The contribution of amino sugar derived carbon to soil organic carbon ranged from 24.0 to 28.3 mg·g-1, which was highest in NPKS, and lowest in HOM and CK. The ratio of fungal to bacterial residues (fungal glucosamine/muramic acid) ranged from 24.4 to 36.6, indicating that fungi dominated the degradation and transformation of organic matter in all the soils. Compared with that under NPK and CK, the participation of organic matter transformation from fungi under NPKS treatment was increased, whereas the bacteria involved in organic matter transformation under HOM treatment was enhanced.


Assuntos
Amino Açúcares/metabolismo , Fertilizantes , Oryza/fisiologia , Rizosfera , Solo
5.
Huan Jing Ke Xue ; 40(2): 970-977, 2019 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628366

RESUMO

The turnover of soil organic carbon (SOC) and the activity of soil microbes can be influenced by exogenous carbon. However, microbial response characteristics of the transformation and distribution of available organic carbon under different levels remain unclear in paddy soils. 13C-labeled glucose was used as a typical available exogenous carbon to simulate indoor culture experiments added at different levels of soil microbial biomass carbon (MBC) (0×MBC, 0.5×MBC, 1×MBC, 3×MBC, and 5×MBC) to reveal the process of C-transformation and distribution. The characteristics of microbial response in the process of exogenous carbon turnover was also monitored. The 96-well microplate fluorescence analysis was adopted to determine the activities of cellobiose hydrolase (CBH) and ß-glucosidase (ß-Glu). The results showed that, in 2 d of incubation, the ratio of labeled glucose carbon to dissolved organic carbon (13C-DOC/DOC) or to SOC (13C-SOC/SOC) was positively correlated with the amount of glucose added. The incorporation of glucose C (13C) into MBC reached the highest value (18.96 mg·kg-1) at 3×MBC treatment but decreased thereafter. The 13C allocation rate was mainly positively correlated with MBC, Olsen-P, and DOC. At 60 d, 13C-DOC, 13C-MBC, and 13C-SOC decreased significantly to less than 0.02 mg·kg-1, 2 mg·kg-1, and 10 mg·kg-1 in soil, and it was positively correlated with the amount of glucose added. Compared with CK, CBH enzyme activity increased significantly after the addition of glucose, and for the 3×MBC treatment it was increased by 22.6 times, which was significantly higher than those of other treatments (P<0.05). However, ß-Glu enzyme activity increased only in the 3×MBC and 5×MBC treatments, wherein it decreased with increasing amounts of added glucose. NH4+-N, pH, ß-Glu, and CBH were the primary factors affecting the distribution rate of 13C. In conclusion, the conversion of exogenous carbon to SOC increased with increased amounts of added organic carbon. This changed the activity of soil enzymes; however, microbial utilization of exogenous carbon may have a saturation threshold. Within the saturation threshold, the conversion rate of organic matter was directly proportional to the amount of added organic matter. When the saturation threshold was exceeded, the conversion rate of organic matter decreased. Therefore, the appropriate addition of exogenous carbon is beneficial, as it can increase SOC in rice fields and improve the quality of the crop growth environment.


Assuntos
Carbono/análise , Oryza/crescimento & desenvolvimento , Microbiologia do Solo , Solo/química
6.
New Phytol ; 189(3): 856-868, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21077888

RESUMO

• The possible roles of K(+) channels in plant adaptation to high Na(+) conditions have not been extensively analyzed. Here, we characterize an inward Shaker K(+) channel, MIRK (melon inward rectifying K(+) channel), cloned in a salt-tolerant melon (Cucumis melo) cultivar, and show that this channel displays an unusual sensitivity to Na(+) . • MIRK expression localization was analyzed by reverse-transcription PCR (RT-PCR). MIRK functional analyses were performed in yeast (growth tests) and Xenopus oocytes (voltage-clamp). MIRK-type activity was revealed in guard cells using the patch-clamp technique. • MIRK is an inwardly rectifying Shaker channel belonging to the 'KAT' subgroup and expressed in melon leaves (especially in guard cells and vasculature), stems, flowers and fruits. Besides having similar features to its close homologs, MIRK displays a unique property: inhibition of K(+) transport by external Na(+) . In Xenopus oocytes, external Na(+) affected both inward and outward MIRK currents in a voltage-independent manner, suggesting a blocking site in the channel external mouth. • The degree of MIRK inhibition by Na(+) , which is dependent on the Na(+) /K(+) concentration ratio, is predicted to have an impact on the control of K(+) transport in planta upon salt stress. Expressed in guard cells, MIRK might control Na(+) arrival to the shoots via regulation of stomatal aperture by Na(+) .


Assuntos
Cucumis/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Tolerância ao Sal , Plantas Tolerantes a Sal/metabolismo , Sódio/farmacologia , Estresse Fisiológico , Transporte Biológico , Técnicas de Patch-Clamp , Estruturas Vegetais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Mol Biotechnol ; 44(1): 51-60, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19669951

RESUMO

We isolated a novel glutamine synthetase (GS, EC 6.3.1.2) gene M-GS2 (accession: AY773090) by the RACE approach from melon. The full-length cDNA of M-GS2 is 1807 bp and contains a 1296 bp open reading frame (ORF) encoding 432 amino acids. The deduced protein contains conserved structural domains among plant GS2 proteins and shares extensive sequence homology with GS2 enzymes from other higher plants. M-GS2 expresses with specificity in leaf, and identification of a chloroplast transit peptide (cTP) in M-GS2 suggests that it localizes to the chloroplast. As shown by real-time quantitative PCR, distinct forms of nitrogen (N) found in fertilizers transcriptionally regulated M-GS2 differently. Ammonium and nitrate feeding only significantly regulated M-GS2 transcripts in leaf; starving (0.75 mM) or moderate (3.75 mM) N levels dramatically increased M-GS2 transcripts for 1 day, decreasing to a constant low level after 2-3 days, while sufficient N level (7.5 mM) had a minor effect throughout 3 days compared to controls. Glutamate feeding, however, not only significantly regulated M-GS2 transcripts in leaf (decreased initially then increased to higher levels than controls), but also in root, where it was up-regulated continuously. Our results suggested that M-GS2 is the first GS gene cloned and characterized in melon and melon responds to the variations in N fertilization by differentially expressing M-GS2.


Assuntos
Cucumis melo/enzimologia , Cucumis melo/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , Nitrogênio/administração & dosagem , Sequência de Aminoácidos , Cucumis melo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...